


# Stress 201i

ISOTROPIC ANALYSIS SOFTWARE FOR HI CELL DATA

# PRODUCT USER MANUAL



T:+61 3 8420 8950

# **Table of Contents**

| Introduction                    | 2                            |
|---------------------------------|------------------------------|
| Installation Procedure          | 3                            |
| Excel 2003                      | 5                            |
| Excel 2007/2010                 | 5                            |
| Sample File                     | 6                            |
| Stress 201i Toolbar             | 6                            |
| Info Worksheet                  | 8                            |
| Non critical information        |                              |
| Critical information            |                              |
| Calculated information          |                              |
| Row Descriptions                | 9                            |
| Overcore and Biaxial Worksheets |                              |
| Calculate Strains               |                              |
| Plot                            |                              |
| $f_x$ Rock Properties           | 20                           |
| $J_{-x}$ Calculate Stresses     | Error! Bookmark not defined. |
| Conventions                     | Error! Bookmark not defined. |
| Checks                          |                              |
| TROUBLE SHOOTING                |                              |
| COPYRIGHT & SUBSCRIPTION        |                              |
| ACKNOWLEDGMENTS                 |                              |
| REFERENCES                      |                              |
|                                 |                              |
| INSTALLING A DIGITAL SIGNITURE  |                              |

# Introduction

This programme allows the user to determine stresses (Isotropic solution) and rock properties from raw data output from a CSIRO HI cell and plot overcore and biaxial tests. The programme is run from Excel. Once the programme is run for the first time a new tool bar is added to Excel (Stress201i). This toolbar has 8 buttons and these buttons operate like any other Excel toolbar button. Simply select the desired button and click the mouse.

The user should have an understanding of the overcore process for CSIRO HI cells and be experienced in selecting gauges for analysis. The user should have a basic understanding of strain gauges. It is also important to understand the conventions used. The programme is for genuine ESS Earth Sciences manufactured CSIRO HI and HID cells with having preset values for Alpha and Beta angles for the strain gauges. It is assumed that the user is familiar with Excel.

This Excel **add in** allows the user to determine rock properties and stresses (Isotropic solution) from raw data output from a CSIRO HI cell. It converts raw voltage to strain, plots overcoring and biaxial data, imports data from a logger, saves and opens Overcoring and Biaxial test files.

### The user should know/have/used:

- Best practices were used installing the HI Cell(s)
- A good understanding of the CSIRO HI cell
- Be experienced in selecting gauges for analysis.
- Understanding of strain gauges limitations and techniques.
- Understand the conventions used.
- Experience using Excel.
- The limitations of this software

# **Installation Procedure**

#### Minimum System requirements:

- Windows 7 and above operating system
- Excel 2010 and above
- 8Mb Ram
- Internet connection

#### System setup

#### Updating from a previous version of stress 201i

All previous versions of Stress 201i *must be deleted*.

Delete the Stress 201i.xla(m) File

Delete the Stress 201i tool bar

If you have trouble with this, contact your IT specialist.

#### What's new in this version?

- New Ribbon design with more tabs.
- Better security. The user does not have to have security settings in Excel set to "Allow all macros". A digital signature is provided so security settings can be set to "Disable all macros except digitally signed macros".
- Better error checking of data and stress computations.
- New Import button which allows user to import logger data directly into a worksheet.
- Alerts the user when a new update is available.
- If you desire we offer free checking of your first workbook to make sure the worksheets have been set up correctly.

Before you install this software you should read the SOFTWARE LICENCE AGREEMENT (EULA) on page 16 of this manual.

Download stress201i.zip folder> extract files to a new folder eg Stress Overcoring.

Right Click "Stress 201i.xlam"> properties

If Security is not visible >OK

Else If Security is visible. "This file came from another computer..... "

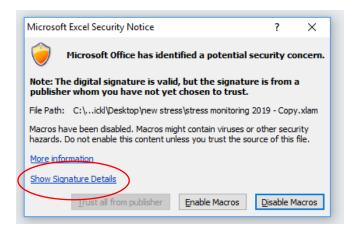
#### > unblock >OK

We have provided a digital signature to use with this software. A digital signature is an electronic, encrypted, stamp of authentication on software. A signature confirms that the information originated from the signer and has not been altered. If you choose to install this digital signature you will have greater security on your computer system and not have the Microsoft security warnings pop up each time you run the software.

If you choose *not to* install the digital signature (*not recommended and some organizations will not allow this*). You will need to change your Trust Settings to allow "Enable all macros"

## Installing the digital signature (recommended).

We have provided a step by step pictorial guide at the end of this manual, if you have any problems installing the digital signature.


First setup the Macro settings in Excel.

Run Excel> File>Options> Trust Center> Trust Center Settings> Macro Settings > Disable all macros except digitally signed macros> OK> OK> Close Excel.

Click "Stress 201i.xlam" to open A pop up should appear

Follow the steps below

- > Show Signature Details
- > View Certificate
- > install Certificate
- > Current User
- > Next
- >Place all certificates in the following store



> Browse
> Trusted Root Certification Authorities
> OK > Next > Finish
"You are about to install a certificate"
> YES
Certificate Import Wizard > OK> OK> OK
> Trust all from Publisher

The Stress Icons should now be visible in the Stress tab and the program ready to run. We have provided a sample workbook to open and get familiar with the program.

# **EARLIER VERSIONS**

Go to windows explorer, select C: (local drive), select program files, once in program files generate a new folder and name it "Stress programme" (or preferred name and path).

Save "Stress 201i.xla" and "sample.hio" in this newly created folder. Open Microsoft Excel.

# Excel 2003

## Updating from a previous version (Deleting Old Toolbar)

Select Tools> customise> tool bars> Stress 20XX toolbar> delete. It is also recommended that the old stress 20XX.xla programme be deleted.

## Macro Security Settings

Select tools > macro > security > medium or low (not recommended as this setting could allow other malicious macros to run). If medium security is selected you will be prompted each time you want to run the programme.

Once saved, double click "Stress 201i.xla" and select Enable macros.

A tool bar will automatically appear. If it doesn't appear select tools> customise> tool bars> select Stress 201i toolbar.

# Excel 2007/2010

## Updating from a previous version (Deleting Old Toolbar)

Select Add-Ins > right click Stress 20XX toolbar > Delete Custom Toolbar

It is also recommended that the old stress 20XX.xla programme be deleted.

## Macro Security Settings

Select Office Button > Excel Options > Trust Center > Trust Center Settings > Macro Settings > Enable all macros

If you cannot select this button contact your IT specialist.

Once saved, double click "Stress 201i.xla". Select and click the Add-ins Tab.

The stress 201i tool bar should be apparent.

# Sample File

Click the Open File icon (green folder) located on the Stress 201i tool bar, open the "sample.hio" file which should now be located in c:\program files\stress 201i (or preferred path and name). This file is a sample file of data, plots and analysis. The installation should now be completed and the programme working.

The Stress Icons should now be visible in the Stress tab and the program ready to run. We have provided a sample workbook to open and get familiar with the program.

# Stress 201i Toolbar

## **Button Description and Operation**



This button allows you to select then open a saved CSIRO HI Cell file ("hio").

filename(s) > <u>O</u>pen.



This button allows you to save a CSIRO HI Cell file ("hio" File.)

*filename> <u>S</u>ave.* 



This button creates a new CSIRO HI cell workbook.

Seven worksheets are created. ocdata, bidata, info, plt, stress, rock and rawdata.



Import

This button imports a logger file to the rawdata worksheet. Either a tab delimited text file (txt) or comma delimited file (csv).

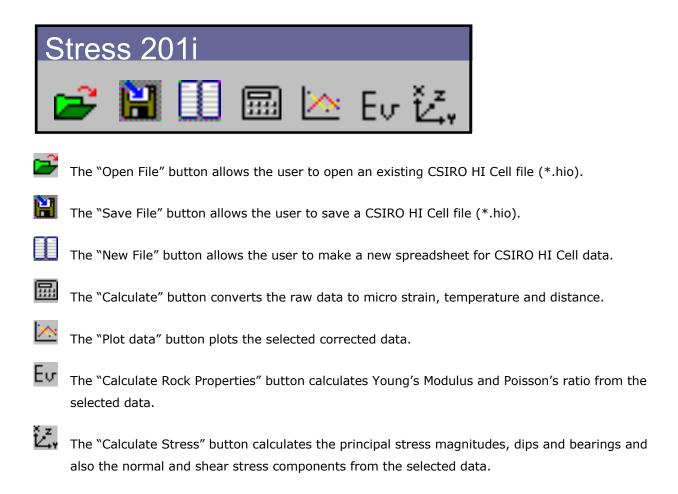


Strains

This button converts raw microvolts to microstrain in the ocdata and bidata worksheets.



This button plots selected rows of data from the oc*data* and bidata worksheets.




This button calculates the Rock Modulus and Poisson's Ratio

 $\int_{-x}^{x}$ Stress

This button calculates Principal Stresses and Normal and Shear Stresses.

# Stress 201i Toolbar Pre 2018



When creating a New File, six sheets are created: ocdata; bidata; info; plt; stress; and rock

# **Info Worksheet**

Some of this information is necessary to perform calculations. Default values for the CSIRO Thinwall cell are automatically inserted. Enter information in column 2.

In this sheet information for the Hi cell is stored in column 2.

This spreadsheet has 3 text colours

#### **Critical information** this information has to **entered**.

This information is needed to convert microvolts to strain and calculate stresses. *This must be numeric data only ie don't enter 38.1mm enter 38.1.* 

**Non critical information t**his data is **not** needed for any calculations. This is just for a record of your test information. This is Information such as location, test number etc.

**Calculated information** this data will be populated when the programme is run, such as maximum temperature change during the overcore test etc.

## **Row Descriptions**

Row 8 Hole Bearing This is the hole bearing for the test, **Positive clockwise from North.** 

Row 9 Hole Dip This is the hole dip for the test, *Dip from Horizontal Positive Down.* (Ie 5° up would be entered as -5).

Row 21 Overcore Diameter: This is the Outside diameter of the overcore (in mm).

Row 22 E Hole Diameter: This is the diameter of the pilot hole (in mm).

Row 23 Diameter of Gauges. This is the diameter of the gauges in the CSIRO cell. This information is on the data sheet for the HI cell.

Row 24 Inner Diameter of Cell. This is the inner diameter of the CSIRO cell. . This information is on the data sheet for the HI cell.

Row 25 Young's Modulus of Epoxy. This is the modulus (GPa) of the epoxy used to glue the CSIRO HI cell to the pilothole. This information is on the data sheet for the HI cell.

Row 26 Poisson's Ratio of Epoxy. This is the Poisson's ratio of the epoxy used to glue the CSIRO HI cell to the pilothole. This information is on the data sheet for the HI cell.

Row 31 Cell Gauge Factor. This is the Gauge Factor of the CSIRO HI Cell. This information is on the data sheet for the HI cell.

Row 32 Readout Gauge Factor. This is the gauge Factor for the logger/readout unit. This must be determined by the operator to give a correct conversion from microvolts to microstrain (consult your operating manual).

Row 33 Orientation of B90 Gauge (#6) .This is the angle of the B90 gauge in the borehole.

Row 37 Rock Modulus. This is the modulus of the rock in GPa. This is calculated from the biaxial test or from laboratory rock testing.

Row 38 Rock Poisson's ratio. This is the Poisson's ratio of the rock. This is calculated from the biaxial test or from laboratory rock testing.

# Non critical information

Rows 1 - 7, 10 - 20, 34 - 36 and 39. This data is not needed for any calculations. This is just for a record of test information.

# Critical information

Rows 8, 9, 21, 22, 23, 24, 25, 26, 31, 32, 33, 37 and 38. This information is needed to convert volts to strain, calculate rock properties and determine stresses. **This must be numeric data only – i.e. don't enter 38.1mm, enter 38.1** 

# Calculated information

Rows 16, 17, 27, 28, 29, 30 and 39. These are calculated values from the test information.

|    | 1                           | 2                      | 3 |
|----|-----------------------------|------------------------|---|
| 1  | Location:                   | Macclesfield Mine      |   |
| 2  | Hole Number:                | UDD1                   |   |
| 3  | Test Number:                | HI 1                   |   |
| 4  | Hole Collar - Northing:     | 10525                  |   |
| 5  | - Easting :                 | 20725                  |   |
| 6  | - Reduced Level :           | -620m                  |   |
| 7  | Surface RL:                 | +100m                  |   |
| 8  | Hole Bearing:               | 45.30                  |   |
| 9  | Hole Dip:                   | -4.30                  |   |
| 10 | Mine North:                 | 45° West of True North |   |
| 11 | Date/Time Installed :       | 23/05/2011 09:35       |   |
| 12 | Date/Time Overcored :       | 24/05/2011 11:00       |   |
| 13 | E Collar Depth :            | 12.145                 |   |
| 14 | E Hole Length :             | 600mm                  |   |
| 15 | Strain Gauge Depth :        | 12.445m                |   |
| 16 | Rock Temperature:           | 33.23°C                |   |
| 17 | Temperature Offset          | -0.1°C                 |   |
| 18 | Drill Water Temperature :   | 25°C                   |   |
| 19 | Cell Type :                 | CSIRO HI Thinwall Cell |   |
| 20 | Cell Number:                | 8069                   |   |
| 21 | Overcore Diameter:          | 144.5                  |   |
| 22 | E Hole Diameter :           | 38.1                   |   |
| 23 | Diameter of Gauges :        | 35                     |   |
| 24 | Inner Diameter of Cell :    | 35                     |   |
| 25 | Young 's Modulus of Epoxy : | 2.60                   |   |
| 26 | Poisson 's Ratio of Epoxy : | 0.40                   |   |
| 27 | K1:                         | 1.1258                 |   |
| 28 | К2:                         | 1.2503                 |   |
| 29 | К3:                         | 1.081                  |   |

| 30 | K4:                             | 0.9505  |
|----|---------------------------------|---------|
| 31 | Cell Gauge Factor :             | 2.103   |
| 32 | Readout Gauge Factor :          | 2.000   |
| 33 | Orientation of B90 Gauge (#6) : | 180     |
| 34 | Core Length :                   | 550mm   |
| 35 | Maximum Biaxial Test Pressure : | 15MPa   |
| 36 | Rock Type:                      | Granite |
| 37 | Modulus:                        | 82.53   |
| 38 | Poisson's ratio:                | 0.25    |
| 39 | Maximum Temperature Change:     | -6.6°C  |

# **Overcore and Biaxial Worksheets**

Note: Only numeric data should be placed in the spreadsheet.

Columns 1-12 Enter raw data from the field measurement record for the gauge outputs in **microvolts**.

Column 13 Enter the Thermistor reading in Ohms

Column 14 Enter the distance measurement in **cms** (This is the approximate distance of drill advance after taking a set of readings for the 12 gauges) in the overcore sheet, and enter the Pressure (MPa) in the biaxial sheet for each row of data.

Column 15 Enter Time in hours and minutes (**hh:mm**). This is the approximate time after taking a set of readings of the 12 gauges.

| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13     | 14   | 15    |
|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|-------|
| A0   | A90  | A45  | B45  | B135 | B90  | C0   | C90  | C45  | D135 | E90  | F90  | Therm  | Dist | Time  |
| (µV) | (Ohms) | (cm) | (hrs) |
| 12   | 26   | 1    | 12   | 11   | 18   | 8    | 512  | -19  | 1016 | 1012 | 1019 | 2110   | 0    | 09:00 |
| 14   | 29   | 6    | 18   | 18   | 24   | 10   | 518  | -14  | 1019 | 1012 | 1028 | 2110   | 0    | 09:10 |
| 16   | 28   | 2    | 18   | 17   | 21   | 14   | 516  | -14  | 1016 | 1012 | 1018 | 2110   | 6    | 09:12 |
| 30   | -26  | 4    | 26   | 21   | -24  | 66   | 466  | 6    | 1024 | 974  | 961  | 2110   | 12   | 09:14 |
| 254  | -104 | 41   | 101  | 105  | -52  | 333  | 420  | 168  | 1136 | 947  | 938  | 2110   | 18   | 09:16 |
| 248  | 353  | 144  | 411  | 288  | 591  | 176  | 1097 | 565  | 1534 | 1644 | 1639 | 2120   | 25   | 09:18 |
| 214  | 691  | 222  | 554  | 428  | 756  | 296  | 1348 | 736  | 1651 | 1881 | 1727 | 2145   | 35   | 09:20 |
| 221  | 686  | 218  | 560  | 430  | 762  | 297  | 1351 | 740  | 1653 | 1887 | 1732 | 2798   | 45   | 09:22 |
| 222  | 684  | 221  | 564  | 436  | 771  | 298  | 1361 | 741  | 1656 | 1891 | 1741 | 2120   | 55   | 09:24 |

ocdata sheet

| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13    | 14    | 15    |
|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| A0   | A90  | A45  | B45  | B135 | B90  | C0   | C90  | C45  | D135 | E90  | F90  | Therm | Press | Time  |
| (µV) | (Ohms | (MPa) | (hrs) |
| 230  | 934  | 345  | 664  | 551  | 992  | 315  | 1560 | 848  | 1814 | 2091 | 1940 |       | 0     |       |
| 284  | 766  | 286  | 596  | 484  | 784  | 366  | 1331 | 757  | 1715 | 1842 | 1753 |       | 5     |       |
| 338  | 581  | 219  | 523  | 413  | 572  | 414  | 1108 | 667  | 1655 | 1616 | 1567 |       | 10    |       |
| 395  | 384  | 149  | 447  | 341  | 344  | 466  | 865  | 569  | 1589 | 1370 | 1373 |       | 15    |       |
| 236  | 956  | 352  | 673  | 561  | 1010 | 314  | 1572 | 857  | 1795 | 2087 | 1950 |       | 0     |       |

bidata sheet

Note it is not necessary to input time and thermistor readings for the biaxial test

#### Raw data worksheet

This is the data after using the import button (or you can manually import the data).

This would typically include Date, Time, 12 strain gauge outputs, temperature and other logger variables.

|   | <u>,</u> 19 - (° - |        |            |             |                             |                  |            | 2019 sample |           |           |            |                |      |     |              |       |
|---|--------------------|--------|------------|-------------|-----------------------------|------------------|------------|-------------|-----------|-----------|------------|----------------|------|-----|--------------|-------|
| R | ile Stress         | Н      |            |             | ge Layout                   | Formulas         | Data       | Review      | View      | Developer | Add-Ins    |                |      |     | ۵            |       |
|   | ا الم 🗧            |        |            |             | $\int f_x \int_{-\infty}^x$ |                  |            |             |           |           |            |                |      |     |              |       |
| _ | en Save H          | -11 Im | port Stra  |             | Rock Stres                  |                  |            |             |           |           |            |                |      |     |              |       |
| ĺ | en save            |        | ipore sen  | 1113 1100   | NOCK SILES                  |                  |            |             |           |           |            |                |      |     |              |       |
|   |                    |        |            |             |                             |                  |            |             |           |           |            |                |      |     |              |       |
|   | R19C23             |        | •          | $f_{x}$     |                             |                  |            |             |           |           |            |                |      |     |              |       |
|   | 6                  |        | 7          | 8           | 9                           | 10               | 11         | 12          | 13        | 14        | 15         | 16             | 17   | 18  | 19           | 20    |
|   | Time               |        | 40         | A90         | A45                         | B45              | B135       | B90         | C0        | C90       | C45        | D135           | E90  |     | PR           | Temp  |
|   | hh:mm:ss           |        | JV         | uV          | uV                          | uV               | uV         | uV          | uV        | uV        | uV         | uV             | uV   |     | uV           | °C    |
|   | 19-01-16 14:1      |        | -94        |             |                             |                  | -192       |             |           |           | 36         |                | 635  |     |              |       |
|   | 19-01-16 14:1      |        | -93        |             |                             |                  | -191       |             | -86       |           | 40         | -1242          |      |     |              |       |
|   | 19-01-16 14:1      |        | -93        | -           |                             |                  | -191       |             | -85       |           | 39         | -1239          | 641  | -5  |              |       |
|   | 19-01-16 14:1      |        | -93        |             |                             |                  | -189       |             | -86       |           | 38         | -1241          | 642  |     |              |       |
|   | 19-01-16 14:1      |        | -93        |             |                             |                  | -190       |             | -84       |           | 41         | -1241          | 638  |     |              |       |
|   | 19-01-16 14:1      |        | -93        |             |                             |                  | -190       |             | -87       |           | 43         | -1240          | 641  | -4  |              |       |
|   | 19-01-16 14:1      |        | -93        |             |                             |                  | -189       |             | -86       |           | 41         | -1238          | 640  |     | -582         |       |
|   | 19-01-16 14:1      |        | -93        |             |                             |                  | -196       |             | -88       |           | 48         | -1247          | 649  |     | -582         |       |
|   | 19-01-16 14:1      |        | -95        |             |                             | 657              | -187       |             | -82       |           | 39         | -1237          | 643  |     |              |       |
|   | 19-01-16 14:1      |        | -92        |             |                             |                  | -194       |             | -81       |           | 49         | -1244          | 630  |     | -582         |       |
|   | 19-01-16 14:2      |        | -93        |             |                             |                  | -200       |             | -64       |           | 54         | -1233          | 623  |     | -582         |       |
|   | 19-01-16 14:2      |        | -89        |             |                             |                  | -210       |             | -57       |           | 52         | -1229          | 615  |     | -581         |       |
|   | 19-01-16 14:2      |        | -89        |             |                             |                  | -208       |             | -20       |           | 39         | -1218          |      |     | -582         |       |
|   | 19-01-16 14:2      |        | -82        |             |                             |                  | -207       |             | 37        |           | 65         | -1196          | 545  |     | -582         |       |
|   | 19-01-16 14:2      |        | -67        |             |                             |                  | -93<br>277 |             | 147       |           | 116<br>275 | -1184          | 491  | -54 | -581<br>-584 |       |
|   | 19-01-16 14:2      |        | -33<br>-26 |             |                             |                  | 790        |             | 357       |           | 430        | -1106<br>-1032 |      |     | -584         |       |
| + | 19-01-16 14:2      |        | -26        |             |                             |                  | 1222       |             |           |           | 430        |                |      |     | -581         |       |
|   | 19-01-16 14:2      |        | -60        |             |                             | 1005             | 1222       |             | 72<br>201 |           | 713        | -1292<br>-1400 | 2042 |     | -501         |       |
|   | 19-01-16 14:2      |        | -60        |             |                             | 1005             | 1547       |             | 201       |           | 713        | -1400          |      |     | -562         |       |
|   |                    |        | -51        |             |                             |                  | 1685       |             | 335       |           | 703        |                |      |     | -500         |       |
|   | 19-01-16 14:2      |        | -51        | -           |                             |                  | 1605       |             | 324       |           | 793        | -1296<br>-1319 | 2344 |     | -501         |       |
|   | 19-01-16 14:2      |        | -50        |             |                             | 1078             | 1676       |             | 324       |           | 793        | -1319          | 2350 |     | -560         |       |
|   | 19-01-16 14:2      |        | -51        |             |                             |                  | 1656       |             | 314       |           | 781        | -1309          |      | 142 | -579         |       |
|   | 19-01-16 14:2      |        | -51        |             |                             |                  | 1640       |             | 312       |           | 786        | -1320          |      |     | -501         |       |
|   | 19-01-16 14:2      |        | -50        |             |                             | 1070             | 1635       |             | 313       |           | 700        | -1330          |      |     | -580         |       |
|   | 19-01-16 14:2      |        | -50        |             |                             |                  | 1635       |             | 314       |           | 772        | -1329          | 2333 |     | -579         |       |
|   | 19-01-16 14:2      |        | -51        |             |                             |                  | 1635       |             | 314       |           | 771        | -1323          |      |     | -575         |       |
|   | 19-01-16 14:2      |        | -51        |             |                             |                  | 1628       |             | 314       |           | 770        | -1330          |      |     | -580         |       |
|   | 19-01-16 14:2      |        | -51        |             |                             |                  | 1620       |             | 314       |           | 771        | -1330          |      |     | -579         |       |
|   | 19-01-16 14:2      |        | -51        |             |                             |                  | 1624       |             | 317       |           | 768        | -1330          | 2328 |     | -579         |       |
|   | 19-01-16 14:3      |        | -52        |             |                             |                  | 1616       |             | 314       |           | 767        | -1333          |      |     | -578         |       |
|   | 19-01-16 14:3      |        | -52        |             |                             | 1043             | 1610       |             | 314       |           | 767        | -1333          | 2320 |     | -579         |       |
|   | 10.04.40.44.5      | 4 20   |            | a           | 4204                        | 4014             | 4040       |             | 042       |           | 700        | -1331          |      |     | -313         | 20.50 |
| 1 | 🕨 🕨 🔤 ocdata       | a 🔬 bi | data 🦯 i   | nfo / plt / | stress / roc                | k <b>rawda</b> t | ta 🦯 🔁 🦯   |             |           | U ◀       |            |                |      |     |              | •     |

This worksheet is provided to so you can store the output file from the logger.

Either use formulas or cut and paste the data into the ocdata (overcoring) and bidata (biaxial) worksheets.

**Columns 1-12** Enter raw data from the strain gauge outputs in **microvolts**.

Column 13 Enter the Thermistor reading in °C or Ohms

**Column 14** Enter the distance measurement in **cms** (drill advance during the overcore test) in the overcore sheet, and the pressure increments in **MPa** in the biaxial sheet.

**Column 15** Enter Time in hours and minutes (**hh:mm**). This is the time when taking a set of readings for the 12 gauges.

### ocdata worksheet

Fill in column 14 with the distance measurements for the overcore test

Note: A Zero must be placed for your start row. `Calculated strains and time will be relative to the first Zero in column 14.

| Fi | le i    | Stress        | Home           | Insert        | t Pag          | e Layout       | Form       | nulas           | Data | Review | View | Dev  | eloper   | Add-Ins | ∾ 🕜 🗆    | ē   |
|----|---------|---------------|----------------|---------------|----------------|----------------|------------|-----------------|------|--------|------|------|----------|---------|----------|-----|
| ~  | 3       | 1 ===         |                | 1231          | XX             | fx .           | ſx         |                 |      |        |      |      |          |         |          |     |
|    |         |               |                |               | -              |                | <i>y_x</i> |                 |      |        |      |      |          |         |          |     |
| pe | en Save | e HI          | Import         | Strains       | Plot           | Rock S         | tress      |                 |      |        |      |      |          |         |          |     |
| _  |         |               |                |               |                |                |            |                 |      |        |      |      |          |         |          |     |
|    | R3C     | 19            | (              | n             | f <sub>x</sub> |                |            |                 |      |        |      |      |          |         |          |     |
| 1  | 1       | 2             | 3              | 4             | 5              | 6              | 7          | 8               | 9    | 10     | 11   | 12   | 13       | 14      | 15       | 16  |
|    | A0      | A90           | A45            | B45           | B135           | B90            | C0         | C90             | C45  | D135   | E90  | F90  | Temp     | Dist    | Time     |     |
|    | (µV)    | (µV)          | (µV)           | (µV)          | (µV)           | (μV)           | (µV)       | (µV)            | (µV) | (µV)   | (μV) | (µV) | (°C / Ω) | (cm)    | (hrs)    |     |
|    | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:04:00 | (   |
|    | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:04:30 | (   |
|    | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:05:00 | (   |
|    | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:05:30 | (   |
|    | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    | 0       | 12:06:00 | (   |
|    | -942    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:06:30 | (   |
|    | -943    | 345           | 395            | 651           | -193           | 1403           | -90        | 2037            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:07:00 | (   |
|    | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    | 2       | 12:07:30 | (   |
|    | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:08:00 | (   |
| 2  | -942    | 345           | 395            | 651           | -192           | 1403           | -90        | 2036            | 36   | -1246  | 635  | -12  | 30.00    | 5       | 12:08:30 | (   |
| 3  | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 37   | -1246  | 635  | -12  | 30.00    |         | 12:09:00 | (   |
| Ļ  | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    | 7       | 12:09:30 | (   |
| 5  | -943    | 345           | 395            | 651           | -192           | 1403           | -90        | 2038            | 36   | -1246  | 635  | -12  | 30.00    |         | 12:10:00 | (   |
| ;  | -936    | 347           | 396            | 655           | -191           | 1407           | -86        | 2039            | 40   | -1242  | 638  | -6   | 29.96    | 10      | 12:10:30 | 6   |
| 7  | -934    | 347           | 396            | 657           | -191           | 1407           | -85        | 2043            | 39   | -1239  | 641  | -5   | 29.96    |         | 12:11:00 | (   |
| 8  | -935    | 346           | 396            | 655           | -189           | 1407           | -86        | 2039            | 38   | -1241  | 642  | -5   | 29.96    |         | 12:11:30 | (   |
| )  | -936    | 346           | 398            | 656           | -190           | 1410           | -84        | 2041            | 41   | -1241  | 638  | -5   | 29.96    | 15      | 12:12:00 | 1   |
| )  | -935    | 349           | 398            | 658           | -190           | 1407           | -87        | 2042            | 43   | -1240  | 641  | -4   | 29.96    |         | 12:12:30 | (   |
|    | -934    | 348           | 397            | 659           | -189           | 1412           | -86        | 2043            | 41   | -1238  | 640  | -4   | 29.95    |         | 12:13:00 | 1   |
| 2  | -930    | 362           | 399            | 659           | -196           | 1420           | -88        | 2041            | 48   | -1247  | 649  | 1    | 29.95    |         | 12:13:30 | 1   |
| ;  | -954    | 348           | 401            | 657           | -187           | 1406           | -82        | 2037            | 39   | -1237  | 643  | 0    | 29.95    | 20      | 12:14:00 |     |
|    | -923    | 332           | 395            | 663           | -194           | 1390           | -81        | 2032            | 49   | -1244  | 630  | -17  | 29.95    |         | 12:14:30 | (   |
| 5  | -936    | 351           | 395            | 665           | -200           | 1374           | -64        | 2030            | 54   | -1233  | 623  | -3   | 29.95    |         | 12:15:00 | (   |
| 5  | -898    | 342           | 377            | 667           | -210           | 1362           | -57        | 2021            | 52   | -1229  | 615  | -23  | 29.95    | 25      | 12:15:30 | (   |
| '  | -893    | 318           | 406            | 655           | -208           | 1332           | -20        | 2002            | 39   | -1218  | 596  | -17  | 29.95    |         | 12:16:00 |     |
| ;  | -825    | 295           | 400            | 664           | -207           | 1256           | 37         | 1975            | 65   | -1196  | 545  | -53  | 29.95    |         | 12:16:30 | (   |
| )  | -672    | 261           | 484            | 645           | -93            | 1162           | 147        | 1931            | 116  | -1184  | 491  | -54  | 29.95    |         | 12:17:00 |     |
| )  | -337    | 242           | 800            | 638           | 277            | 1114           | 357        | 1917            | 275  | -1106  | 372  | -60  | 29.95    | 30      | 12:17:30 | (   |
|    | -260    | 480           | 1375           | 632           | 790            | 1705           | 327        | 2193            | 430  | -1032  | 454  | 96   | 29.94    |         | 12:18:00 | 1   |
| •  | -657    | 964<br>ocdata | 1489<br>bidata | 756<br>/ info | 1222           | 2765<br>stress | 72<br>rock | 2679<br>rawdata | 512  | -1292  | 1205 | 399  | 29.94    |         | 12:18:30 | ▶ [ |

Notes: Only numeric data will be accepted. If non numeric data is encountered while calculating an error will be displayed.

If the reading from the thermistor is in Ohms (column 13) the temperature will be calculated in column 30.

#### bidata worksheet

Fill in column 14 with the Pressure increments (MPa) taken for the biaxial test.

Note: Zero must be placed for your start row. Calculated strains and time will be relative to the first Zero in column 14.

| Fi | 10000 | ress     | Home   | Insert  | Pag              | e Layout | Form            | ulas    | Data  | Review | View | Dev  | eloper   | Add-Ins | a 🕜 🗆 🕯  | 2   |
|----|-------|----------|--------|---------|------------------|----------|-----------------|---------|-------|--------|------|------|----------|---------|----------|-----|
| Op | )<br> |          |        | Strains | Plot             | $f_x$    | $\int_{-x}^{x}$ |         |       |        |      |      |          |         |          |     |
|    |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
|    | R5C   | 26       |        | n       | f <sub>x</sub> 0 |          |                 |         |       |        |      |      |          |         |          |     |
| 4  | 1     | 2        | 3      | 4       | 5                | 6        | 7               | 8       | 9     | 10     | 11   | 12   | 13       | 14      | 15       | 16  |
|    | A0    | A90      | A45    | B45     | B135             | B90      | C0              | C90     | C45   | D135   | E90  | F90  | Temp     | Press   | Time     |     |
| 2  | (µV)  | (µV)     | (µV)   | (µV)    | (µV)             | (µV)     | (µV)            | (µV)    | (µV)  | (µV)   | (µV) | (µV) | (°C / Ω) | (MPa)   | (hrs)    |     |
|    | 1     | -6       | -3     | -4      | -7               | -9       | -1              | -5      | -5    | -3     | -7   | 0    | 2006     |         | 17:05:33 |     |
|    | 0     | -7       | -5     | -6      | -8               | -11      | -1              | -6      | -3    | -2     | -7   | 0    | 2005     |         | 17:06:12 |     |
|    | 3     | -5       | -2     | -2      | -7               | -9       | 0               | -4      | -3    | -1     | -7   | 1    | 2004     | 0       | 17:06:31 |     |
| ;  | 39    | -127     | -41    | -52     | -46              | -137     | 35              | -125    | -44   | -42    | -131 | -116 | 2002     | 4       | 17:07:09 |     |
| '  | 75    | -274     | -88    | -110    | -93              | -285     | 73              | -266    | -92   | -91    | -277 | -257 | 2000     | 8       | 17:07:33 |     |
| }  | 117   | -416     | -132   | -166    | -136             | -430     | 113             | -404    | -139  | -139   | -419 | -395 | 1999     | 12      | 17:07:55 |     |
| )  | 80    | -286     | -91    | -111    | -92              | -294     | 77              | -275    | -94   | -95    | -287 | -267 | 1998     | 8       | 17:08:18 |     |
| 0  | 7     | -21      | -7     | -4      | -8               | -20      | 1               | -15     | -5    | -7     | -20  | -15  | 1997     | 0       | 17:08:38 |     |
| 1  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 2  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 3  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 4  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 5  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 6  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 7  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 8  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 9  |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 20 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 21 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 22 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 23 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 24 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 25 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 26 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 27 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 28 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 29 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 30 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 31 |       |          |        |         |                  |          |                 |         |       |        |      |      |          |         |          |     |
| 2  | ► H T | ocdata 🖉 | bidata | info    | plt / s          | stress / | rock /          | rawdata | / 🐑 / |        |      |      |          |         |          | ► T |

Notes: Only numeric data will be accepted. If non numeric data is encountered while calculating an error will be displayed.

If the reading from the thermistor is in Ohms (column 13) the temperature will be calculated in column 30.

# 🧾 Calculate Strains

This button converts the raw data in microvolts to microstrain for both the biaxial test and the overcore test. It also calculates the relative time difference (column 17), relative strain difference for each gauge (columns 18 - 29), rock temperature (column 30) and incremental distance for each gauge (columns 31 – 42).

**It is important that a zero is placed in the first row in column 14**. More than one zero can be placed in this column. The programme calculates relative values from the last zero value at the beginning of this column. The programme will keep calculating values while there is a value in the Distance / Pressure (14) or Time column (15).

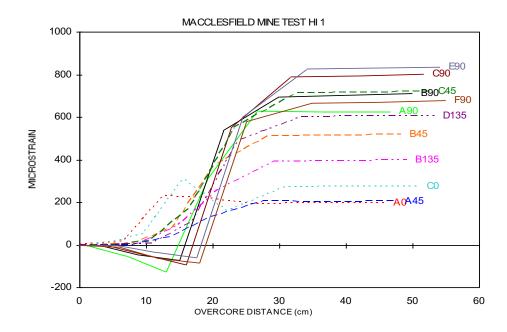
**Only numeric data will be accepted**. If non numeric data is encountered while calculating an error will be displayed (Run time error `1004' or `13").

|      | <b>9</b> 19 1 | · (°= - 💡 | 🕯 🖓   <del>,</del> | ;     |                | Str     | ess 2019 sar | npl  | e.hio - | Microso | ft Excel |        |          |        | - [    | _ >  | ×     |
|------|---------------|-----------|--------------------|-------|----------------|---------|--------------|------|---------|---------|----------|--------|----------|--------|--------|------|-------|
| Fi   | le            | Stress    | Home               | Inser | t Page         | Layout  | Formula      | IS   | Data    | a Rev   | iew Vi   | ew D   | eveloper | Add-In | ıs 🛛 🖓 | - 6  | 23    |
|      | R13           | C33       | - (                | 0     | f <sub>x</sub> |         |              |      |         |         |          |        |          |        |        |      | ٧     |
|      | 1             | 2         | 11                 | 12    | 13             | 14      | 15           | 16   | 17      | 18      | 19       | 20     | 27       | 28     | 29     | 30   | =     |
| 1    | A0            | A90       | E90                | F90   | Temp           | Press   | Time         |      | Time    | A0      | A90      | A45    | D135     | E90    | F90    | Temp |       |
| 2    | (µV)          | (μV)      | (µV)               | (µV)  | (°C / Ω)       | (MPa)   | (hrs)        |      | (min    | (µɛ)    | (µɛ)     | (µɛ)   | (µɛ)     | (µɛ)   | (µɛ)   | (°C) |       |
| 3    | 1             | -6        | -7                 | 0     | 2006           |         | 17:05:33     |      |         |         |          |        |          |        |        |      |       |
| 4    | 0             | -7        | -7                 | 0     | 2005           |         | 17:06:12     |      |         |         |          |        |          |        |        |      |       |
| 5    | 3             | -5        | -7                 | 1     | 2004           | 0       | 17:06:31     |      | 0       | 0.0     | 0.0      | 0.0    | 0.0      | 0.0    | 0.0    | 34.5 |       |
| 6    | 39            | -127      | -131               | -116  | 2002           | 4       | 17:07:09     |      | 0.63    | 33.9    | -116.3   | -37.1  | -38.7    | -117.9 | -111.9 | 34.5 |       |
| 7    | 75            | -274      | -277               | -257  | 2000           | 8       | 17:07:33     |      | 1.03    | 68.5    | -256.5   | -81.8  | -85.6    | -256.8 | -245.7 | 34.5 |       |
| 8    | 117           | -416      | -419               | -395  | 1950           | 12      | 17:07:55     |      | 1.4     | 108.1   | -391.5   | -123.3 | -130.9   | -391.8 | -377.2 | 35.1 |       |
| 9    | 80            | -286      | -287               | -267  | 1900           | 8       | 17:08:18     |      | 1.78    | 73.5    | -267.2   | -84.0  | -89.1    | -266.3 | -255.5 | 35.7 |       |
| 10   | 7             | -21       | -20                | -15   | 1800           | 0       | 17:08:38     |      | 2.12    | 3.5     | -15.5    | -4.8   | -5.4     | -12.4  | -15.5  | 37.1 |       |
| 11   |               |           |                    |       |                |         |              |      |         |         |          |        |          |        |        |      |       |
| 12   |               |           |                    |       |                |         |              |      |         |         |          |        |          |        |        |      |       |
| 13   |               |           |                    |       |                |         |              |      |         |         |          |        |          |        |        |      | -     |
| 14.4 | ▶ ▶           | ocdata    | bidata             | info_ | /plt / s       | tress 🦯 | rock 🦯 raw   | vdat | ta 🦯    | 2/      |          |        |          |        |        |      |       |
| Lice | nsed to I     | MMS Expir | res in 86 l        | Days  |                |         |              |      |         |         |          |        |          | 100% 😑 |        |      | ) _;; |

## **Biaxial Worksheet**

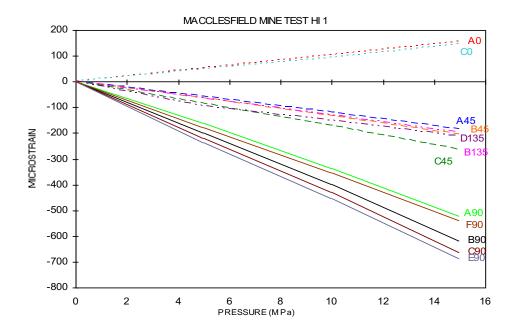
| X    | <b>9</b> 9 | · (°1 - 9  | 3 🖓 I <del>-</del> | <del>,</del> |              | Stre     | ess 2019 sai | mple | e.hio - Mi     | crosoft E | cel   |        |        |        | _     |       | ×    |
|------|------------|------------|--------------------|--------------|--------------|----------|--------------|------|----------------|-----------|-------|--------|--------|--------|-------|-------|------|
| Fi   | le         | Stress     | Home               | Inser        | t Page       | Layout   | Formula      | 15   | Data           | Review    | View  | Dev    | eloper | Add-In | s ♡ ( | 2 - 6 | F Σ3 |
|      | R110       | C32        | (                  | n            | $f_{\infty}$ |          |              |      |                |           |       |        |        |        |       |       | ~    |
|      | 1          | 2          | 11                 | 12           | 13           | 14       | 15           | 16   | 17             | 18        | 19    | 20     | 27     | 28     | 29    | 30    |      |
| 1    | A0         | A90        | E90                | F90          | Temp         | Dist     | Time         |      | Time           | A0        | A90   | A45    | D135   | E90    | F90   | Temp  |      |
| 2    | (µV)       | (µV)       | (µV)               | (µV)         | (°C / Ω)     | (cm)     | (hrs)        |      | (mins)         | (µɛ)      | (µɛ)  | (µɛ)   | (µɛ)   | (µɛ)   | (µɛ)  | (°C)  |      |
| 7    | -943       | 345        | 635                | -12          | 30.00        | 0        | 12:06:00     |      | 0              | 0.0       | 0.0   | 0.0    | 0.0    | 0.0    | 0.0   | 30.0  |      |
| 11   | -943       | 345        | 635                | -12          | 30.00        |          | 12:08:00     |      | 2              | 0.0       | 0.0   | 0.0    | 0.0    | 0.0    | 0.0   | 30.0  |      |
| 12   | -942       | 345        | 635                | -12          | 30.00        | 5        | 12:08:30     |      | 2.5            | 1.0       | 0.0   | 0.0    | 0.0    | 0.0    | 0.0   | 30.0  |      |
| 16   | -936       | 347        | 638                | -6           | 29.96        | 10       | 12:10:30     |      | 4.5            | 6.7       | 1.9   | 1.0    | 3.8    | 2.9    | 5.7   | 30.0  |      |
| 19   | -936       | 346        | 638                | -5           | 29.96        | 15       | 12:12:00     |      | 6              | 6.7       | 1.0   | 2.9    | 4.8    | 2.9    | 6.7   | 30.0  |      |
| 23   | -954       | 348        | 643                | 0            | 29.95        | 20       | 12:14:00     |      | 8              | -10.5     | 2.9   | 5.7    | 8.6    | 7.6    | 11.4  | 30.0  |      |
| 26   | -898       | 342        | 615                | -23          | 29.95        | 25       | 12:15:30     |      | 9.5            | 42.8      | -2.9  | -17.1  | 16.2   | -19.0  | -10.5 | 29.9  |      |
| 29   | -672       | 261        | 491                | -54          | 29.95        |          | 12:17:00     |      | 11             | 257.7     | -79.9 | 84.6   | 59.0   | -136.9 | -39.9 | 29.9  |      |
| 30   | -337       | 242        | 372                | -60          | 29.95        | 30       | 12:17:30     |      | 11.5           | 576.3     | -98.0 | 385.2  | 133.1  | -250.1 | -45.6 | 29.9  |      |
| 33   | -608       | 1063       | 2042               | 479          | 29.94        | 35       | 12:19:00     |      | 13             | 318.6     | 682.8 | 1013.8 | -146.5 | 1338.1 | 467.0 | 29.9  |      |
| 34   | -519       | 944        | 2302               | 310          | 29.94        |          | 12:19:30     |      | 13.5           | 403.2     | 569.7 | 966.2  | -68.5  | 1585.4 | 306.2 | 29.9  |      |
| 35   | -511       | 890        | 2344               | 201          | 29.94        |          | 12:20:00     |      | 14             | 410.8     | 518.3 | 951.0  | -47.6  | 1625.3 | 202.6 | 29.9  |      |
| 36   | -507       | 872        | 2358               | 156          | 29.94        |          | 12:20:30     |      | 14.5           | 414.6     | 501.2 | 934.9  | -69.4  | 1638.6 | 159.8 | 29.9  |      |
| 37   | -512       | 850        | 2335               | 142          | 29.94        | 40       | 12:21:00     |      | 15             | 409.9     | 480.3 | 924.4  | -59.9  | 1616.7 | 146.5 | 29.9  |      |
| 38   | -515       | 870        | 2337               | 140          | 29.93        |          | 12:21:30     |      | 15.5           | 407.0     | 499.3 | 917.7  | -70.4  | 1618.6 | 144.6 | 29.9  |      |
| 39   | -502       | 857        | 2335               | 140          | 29.92        |          | 12:22:00     |      | 16             | 419.4     | 486.9 | 912.0  | -79.9  | 1616.7 | 144.6 | 29.9  |      |
| 40   | -507       | 842        | 2339               | 134          | 29.91        |          | 12:22:30     |      | 16.5           | 414.6     | 472.7 | 928.2  | -79.9  | 1620.5 | 138.8 | 29.9  |      |
| 41   | -517       | 847        | 2330               | 147          | 29.90        | 45       | 12:23:00     |      | 17             | 405.1     | 477.4 | 923.4  | -78.9  | 1612.0 | 151.2 | 29.9  |      |
| 42   | -519       | 845        | 2328               | 143          | 29.94        |          | 12:23:30     |      | 17.5           | 403.2     | 475.5 | 921.5  | -79.9  | 1610.1 | 147.4 | 29.9  | -    |
| H 4  |            | ocdata     | bidata             | <u> </u>     | ∠plt ∕st     | ress / I | rock / rav   | vdat | a <u>( 🖓 /</u> | ∕ ∎ •     |       |        |        |        |       |       |      |
| Lice | nsed to N  | /IMS Expir | es in 86 E         | Days         |              |          |              |      |                |           |       |        | 10     | 0% 🗩   |       | )(    | +:   |

## **Overcore Worksheet**




This button allows plotting of the overcore and biaxial data.

To plot all gauges vs **distance** select any of columns 1-14. Select the start row and highlight to the end row you wish to plot. Click i and the graph will be updated in the "plt" sheet. To plot all gauges vs **time** select the column 15 from the start row to the end row.


| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13     | 14   | 15    |
|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|-------|
| A0   | A90  | A45  | B45  | B135 | B90  | C0   | C90  | C45  | D135 | E90  | F90  | Therm  | Dist | Time  |
| (µV) | (Ohms) | (cm) | (hrs) |
| 12   | 26   | 1    | 12   | 11   | 18   | 8    | 512  | -19  | 1016 | 1012 | 1019 | 2110   | 0    | 09:00 |
| 14   | 29   | 6    | 18   | 18   | 24   | 10   | 518  | -14  | 1019 | 1012 | 1028 | 2110   | 0    | 09:10 |
| 16   | 28   | 2    | 18   | 17   | 21   | 14   | 516  | -14  | 1016 | 1012 | 1018 | 2110   | 6    | 09:12 |
| 30   | -26  | 4    | 26   | 21   | -24  | 66   | 466  | 6    | 1024 | 974  | 961  | 2110   | 12   | 09:14 |
| 254  | -104 | 41   | 101  | 105  | -52  | 333  | 420  | 168  | 1136 | 947  | 938  | 2110   | 18   | 09:16 |
| 248  | 353  | 144  | 411  | 288  | 591  | 176  | 1097 | 565  | 1534 | 1644 | 1639 | 2120   | 25   | 09:18 |
| 214  | 691  | 222  | 554  | 428  | 756  | 296  | 1348 | 736  | 1651 | 1881 | 1727 | 2145   | 35   | 09:20 |
| 221  | 686  | 218  | 560  | 430  | 762  | 297  | 1351 | 740  | 1653 | 1887 | 1732 | 2798   | 45   | 09:22 |
| 222  | 684  | 221  | 564  | 436  | 771  | 298  | 1361 | 741  | 1656 | 1891 | 1741 | 2120   | 55   | 09:24 |

(above) select column – ocdata worksheet. Then click 🔬 o get pot (below).



| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13    | 14    | 15    |
|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| A0   | A90  | A45  | B45  | B135 | B90  | C0   | C90  | C45  | D135 | E90  | F90  | Therm | Press | Time  |
| (µV) | (Ohms | (MPa) | (hrs) |
| 230  | 934  | 345  | 664  | 551  | 992  | 315  | 1560 | 848  | 1814 | 2091 | 1940 |       | 0     |       |
| 284  | 766  | 286  | 596  | 484  | 784  | 366  | 1331 | 757  | 1715 | 1842 | 1753 |       | 5     |       |
| 338  | 581  | 219  | 523  | 413  | 572  | 414  | 1108 | 667  | 1655 | 1616 | 1567 |       | 10    |       |
| 395  | 384  | 149  | 447  | 341  | 344  | 466  | 865  | 569  | 1589 | 1370 | 1373 |       | 15    |       |
| 236  | 956  | 352  | 673  | 561  | 1010 | 314  | 1572 | 857  | 1795 | 2087 | 1950 |       | 0     |       |

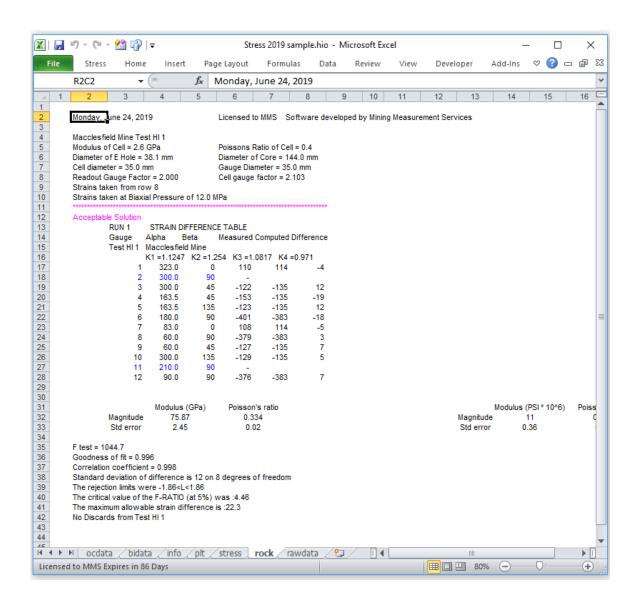
(above) select column – bidata worksheet. Then click to get pot (below).



# $f_x$ Rock Properties

This button allows you to calculate the Young's Modulus and Poisson's ratio and their respective standard errors. Select the row you wish to calculate rock properties from or multi select gauges you wish to include. The calculated Modulus and Poisson's ratio is placed in the info worksheet.

Select the biaxial sheet; click the row you wish to calculate rock properties from or multi select gauges you wish to include. Click  $f_x$ 


|      | <b>9</b> 9 | (Ci - 💡   | 🕯 🖓 I <del>.</del> | -      |         | Str       | ess 2019 | sample.h | io - Mic | rosoft Exc | :el  |      |             | _       |          | ×            |
|------|------------|-----------|--------------------|--------|---------|-----------|----------|----------|----------|------------|------|------|-------------|---------|----------|--------------|
| F    | ile        | Stress    | Home               | Insert | Pa      | ge Layout | Form     | ulas l   | Data     | Review     | View | Deve | loper       | Add-Ins | v 🕜 🗆 ē  | Ξ <u>Σ</u> 3 |
|      | R8C        | 14        | (                  | •      | $f_{x}$ | 12        |          |          |          |            |      |      |             |         |          | ~            |
| - 21 | 1          | 2         | 3                  | 4      | 5       | 6         | 7        | 8        | 9        | 10         | 11   | 12   | 13          | 14      | 15       | E            |
| 1    | A0         | A90       | A45                | B45    | B135    | B90       | C0       | C90      | C45      | D135       | E90  | F90  | Temp        | Press   | Time     |              |
| 2    | (µV)       | (µV)      | (μV)               | (µV)   | (µV)    | (μV)      | (µV)     | (μV)     | (µV)     | (μV)       | (µV) | (µV) | (°C / Ω)    | (MPa)   | (hrs)    |              |
| 3    | 1          | -6        | -3                 | -4     | -       | 7 -9      | -1       | -5       | -5       | -3         | -7   | 0    | 2006        |         | 17:05:33 | } ≡          |
| 4    | 0          | -7        | -5                 | -6     | -1      | 8 -11     | -1       | -6       | -3       | -2         | -7   | 0    | 2005        |         | 17:06:12 | !            |
| 5    | 3          | -5        | -2                 | -2     | -       | 7 -9      | 0        | -4       | -3       | -1         | -7   | 1    | 2004        | 0       | 17:06:31 |              |
| 6    | 39         | -127      | -41                | -52    | -4      | 6 -137    | 35       | -125     | -44      | -42        | -131 | -116 | 2002        | 4       | 17:07:09 | 1            |
| 7    | 75         | -274      | -88                | -110   | -9      | 3 -285    | 73       | -266     | -92      | -91        | -277 | -257 | 2000        | 8       | 17:07:33 | \$           |
| 8    | 117        | -416      | -132               | -166   | -13     | 6 -430    | 113      | -404     | -139     | -139       | -419 | -395 | 1999        | 12      | 17:07:55 | j -          |
| 9    | 80         | -286      | -91                | -111   | -9      | 2 -294    | 77       | -275     | -94      | -95        | -287 | -267 | 1998        | 8       | 17:08:18 | 5            |
| 10   | 7          | -21       | -7                 | -4     | -       | 8 -20     | 1        | -15      | -5       | -7         | -20  | -15  | 1997        | 0       | 17:08:38 | i –          |
| 14 - | ► ► [      | ocdata    | bidata             | info 🤇 | / plt / | stress /  | rock /   | rawdata  | / 🞾 /    | •          |      |      |             |         | •        |              |
| Lice | nsed to N  | MMS Expir | res in 86 l        | Days   |         |           |          |          |          |            |      |      | <u>100%</u> | . —     | (•       | Ð "          |

Single select

### OR multi select cells

| X    | 🚽 🔊 י  | · (21 + 🔮           | 🖺 🖓 I 🕇 | <del>,</del> |         | Str      | ess 2019        | sample.h             | io - Mic | rosoft Exc | cel      |      |                                        | _       |          | ×      |
|------|--------|---------------------|---------|--------------|---------|----------|-----------------|----------------------|----------|------------|----------|------|----------------------------------------|---------|----------|--------|
| Fi   | le     | Stress              | Home    | Insert       | Page    | e Layout | Form            | ulas (               | Data     | Review     | View     | Deve | loper A                                | Add-Ins | a 🕜 🗆 ē  | 53     |
| Ope  | en Sav | e HI                | Import  | Strains      | Plot    |          | $\int_{-x}^{x}$ |                      |          |            |          |      |                                        |         |          |        |
|      | R80    | :12                 | (       | 0            | $f_x$ - | 395.3333 | 333333          | 34                   |          |            |          |      |                                        |         |          | 1      |
|      | 1      | 2                   | 3       | 4            | 5       | 6        | 7               | 8                    | 9        | 10         | 11       | 12   | 13                                     | 14      | 15       |        |
| 1    | A0     | A90                 | A45     | B45          | B135    | B90      | C0              | C90                  | C45      | D135       | E90      | F90  | Temp                                   | Press   | Time     |        |
| 2    | (µV)   | (µV)                | (μV)    | (μV)         | (µV)    | (µV)     | (µV)            | (μV)                 | (μV)     | (µV)       | (μV)     | (µV) | (°C / Ω)                               | (MPa)   | (hrs)    |        |
| 3    | 1      | -6                  | -3      | -4           | -7      | -9       | -1              | -5                   | -5       | -3         | -7       | 0    | 2006                                   |         | 17:05:33 |        |
| 4    | 0      | -7                  | -5      | -6           | -8      | -11      | -1              | -6                   | -3       | -2         | -7       | 0    | 2005                                   |         | 17:06:12 |        |
| 5    | 3      | -5                  | -2      | -2           | -7      | -9       | 0               | -4                   | -3       | -1         | -7       | 1    | 2004                                   | 0       | 17:06:31 |        |
| 6    | 39     | -127                | -41     | -52          | -46     | -137     | 35              | -125                 | -44      | -42        | -131     | -116 | 2002                                   | 4       | 17:07:09 |        |
| 7    | 75     | -274                | -88     | -110         | -93     | -285     | 73              | -266                 | -92      | -91        | -277     | -257 | 2000                                   | 8       | 17:07:33 |        |
| 8    | 117    | -416                | -132    | -166         | -136    | -430     | 113             | -404                 | -139     | -139       | -419     | -395 | 1999                                   | 12      | 17:07:55 |        |
| 9    | 80     | -286                | -91     | -111         | -92     | -294     | 77              | -275                 | -94      | -95        | -287     | -267 | 1998                                   | 8       | 17:08:18 |        |
| 10   | 7      | -21                 | -7      | -4           | -8      | -20      | 1               | -15                  | -5       | -7         | -20      | -15  | 1997                                   | 0       | 17:08:38 |        |
| 11   |        |                     |         |              |         |          |                 |                      |          |            |          |      |                                        |         |          |        |
| 12   |        |                     |         |              |         |          |                 |                      |          |            |          |      |                                        |         |          |        |
| 13   |        |                     |         |              |         |          |                 |                      |          |            |          |      |                                        |         |          |        |
| 14   |        |                     |         |              |         |          |                 |                      |          |            |          |      |                                        |         |          |        |
| H 4  | ▶ ₩    | ocdata              | bidata  | info _       | /plt /  | stress 🧷 | rock 🦯          | rawdata              | / 🔁 /    | - I 4      |          |      |                                        |         | •        | 1      |
| 14 A |        | ocdata<br>MMS Expir |         | A            | /plt /  | stress 🤇 |                 | rawdata<br>ige: -171 | Count:   | ·          | m: -1711 |      | ······································ |         |          | •<br>• |

The calculated Modulus and Poisson's ratio, statistical and test details are placed in the rock worksheet.



The calculated Modulus and Poisson's ratio are also placed in the info sheet column 2, in rows 37 and 38 respectively.

| 🛛   🛃   | 19 - (11 -   | 🔮 👘 I 🕫        |             | St             | ress 2019 samp | le.hio - N  | licrosoft Exc | cel     |      |               | -       | - 🗆 | ×   | $\langle  $ |
|---------|--------------|----------------|-------------|----------------|----------------|-------------|---------------|---------|------|---------------|---------|-----|-----|-------------|
| File    | Stress       | Home           | Insert      | Page Layout    | Formulas       | Data        | Review        | View    | Deve | loper         | Add-Ins | ♥ 🕜 | - 6 | 23          |
|         | R37C9        |                |             | f <sub>x</sub> |                |             |               |         |      |               |         |     |     | Υ.          |
| - 24    |              | 1              |             |                |                | 2           |               |         | 3    | 4             | 5       | 6   | 7   | E           |
| 31      |              | Cell G         | auge Facto  | or :           | 2              | 103         |               |         |      |               |         |     |     |             |
| 32      |              | Readout G      | auge Facto  | or :           | 2              | 000         |               |         |      |               |         |     |     |             |
| 33      | Orien        | tation of B90  | Gauge (#8   | 5) :           | 1              | 80          |               |         |      |               |         |     |     |             |
| 34      |              | (              | Core Lengt  | h :            | 45             | 0mm         |               |         |      |               |         |     |     |             |
| 35      | Maxim        | num Biaxial Te | st Pressur  | e:             | 12             | MPa         |               |         |      |               |         |     |     |             |
| 36      |              |                | Rock Typ    | be:            | G              | ofite       |               |         |      |               |         |     |     |             |
| 37      |              |                | Moduli      | JS:            | 7              | 5.87        |               |         |      |               |         |     |     | $\equiv$    |
| 38      |              | Po             | isson's rat | tio:           | 0              | .33         |               |         |      |               |         |     |     |             |
| 39      | Maxir        | mum Tempera    | ture Chang  | ge:            | increase       | e of +1.0°C |               |         |      |               |         |     |     |             |
| 40      |              |                |             |                |                |             |               |         |      |               |         |     |     | Ŧ           |
| 14 A F  | N ocdata     | 🖉 bidata 🤇     | info 🦯      | plt / stress / | rock / rawda   | ata 🖉 🔁     | / 🚺           | · · · · |      |               |         |     | ▶ [ | 1           |
| License | d to MMS Exp | pires in 86 Da | ays         |                |                |             |               |         |      | <u>II</u> 809 | 6 🗩     |     | -+  | ) .::       |

**The file must be saved first to calculate the rock properties**. If the file is not saved an error will be displayed "Select Valid Workbook (.hio)".

Select data – bidata worksheet

| 1    | 2    | 3    | 4    | 5    | 6       | 7       | 8       | 9     | 10       | 11    | 12   | 13    | 14    | 15    |
|------|------|------|------|------|---------|---------|---------|-------|----------|-------|------|-------|-------|-------|
| A0   | A90  | A45  | B45  | B135 | B90     | C0      | C90     | C45   | D135     | E90   | F90  | Therm | Press | Time  |
| (µV) | (µV) | (µV) | (µV) | (µV) | (µV)    | (µV)    | (µV)    | (µV)  | (µV)     | (µV)  | (µV) | (Ohms | (MPa) | (hrs) |
| 230  | 934  | 345  | 664  | 551  | 992     | 315     | 1560    | 848   | 1814     | 2091  | 1940 |       | 0     |       |
| 284  | 766  | 286  | 596  | 484  | 784     | 366     | 1331    | 757   | 1715     | 1842  | 1753 |       | 5     |       |
| 338  | 581  | 219  | 523  | 413  | 572     | 414     | 1108    | 667   | 1655     | 1616  | 1567 |       | 10    |       |
| 395  | 384  | 149  | 447  | 341  | 344     | 466     | 865     | 569   | 1589     | 1370  | 1373 |       | 15    |       |
| 236  | 956  | 352  | 673  | 561  | 1010    | 314     | 1572    | 857   | 1795     | 2087  | 1950 |       | 0     |       |
|      | •    | •    | -    | Sinc | ام دمام | ction - | for all | asuaa | c (any d | olumn |      | •     | •     | ·     |

Single selection – for all gauges (any column)...

| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13    | 14    | 15    |
|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| A0   | A90  | A45  | B45  | B135 | B90  | C0   | C90  | C45  | D135 | E90  | F90  | Therm | Press | Time  |
| (µV) | (Ohms | (MPa) | (hrs) |
| 230  | 934  | 345  | 664  | 551  | 992  | 315  | 1560 | 848  | 1814 | 2091 | 1940 |       | 0     |       |
| 284  | 766  | 286  | 596  | 484  | 784  | 366  | 1331 | 757  | 1715 | 1842 | 1753 |       | 5     |       |
| 338  | 581  | 219  | 523  | 413  | 572  | 414  | 1108 | 667  | 1655 | 1616 | 1567 |       | 10    |       |
| 395  | 384  | 149  | 447  | 341  | 344  | 466  | 865  | 569  | 1589 | 1370 | 1373 |       | 15    |       |
| 236  | 956  | 352  | 673  | 561  | 1010 | 314  | 1572 | 857  | 1795 | 2087 | 1950 |       | 0     |       |

...or Multi selection – for selected gauges (from same pressure only)

You may be prompted to accept or reject a certain Run if gauges are not statistically acceptable. Select Yes or No.

# Click $f_x$ to get the following report:

Licensed to X Software developed by

Friday, 24 June 2011

Macclesfield Mine Test HI 1Modulus of Cell = 2.6 GPaPoissons Ratio of Cell = 0.4Diameter of E Hole = 38.1 mmDiameter of Core = 144.5 mmCell diameter = 35.0 mmGauge Diameter = 35.0 mmReadout Gauge Factor = 2.000Cell gauge factor = 2.103Strains taken from row 6Strains taken at Biaxial Pressure of 15.0 MPa

#### Acceptable Solution

| RUN 1     | STRAIN DIFFER     | RENCE TABLE |         |           |         |            |
|-----------|-------------------|-------------|---------|-----------|---------|------------|
| Gauge     | Alpha             | Beta        | Meas    | sured     | Compute | Difference |
| Test HI 1 | Macclesfield Mine | e           |         |           |         |            |
|           | K1 =1.1245 K2     | 2 =1.250 K3 | =1.0809 | K4 =0.961 |         |            |
| 1         | 323.0             | 0           | 157     |           | 173     | -16        |
| 2         | 300.0             | 90          | -523    |           | -618    | 94         |
| 3         | 300.0             | 45          | -186    |           | -222    | 36         |
| 4         | 163.5             | 45          | -206    |           | -222    | 16         |
| 5         | 163.5             | 135         | -200    |           | -222    | 23         |
| 6         | 180.0             | 90          | -616    |           | -618    | 1          |
| 7         | 83.0              | 0           | -       |           |         |            |
| 8         | 60.0              | 90          | -661    |           | -618    | -43        |
| 9         | 60.0              | 45          | -265    |           | -222    | -43        |
| 10        | 300.0             | 135         | -214    |           |         |            |
| 11        | 210.0             | 90          | -686    |           | -618    | -68        |
| 12        | 90.0              | 90          | -       |           |         |            |

|           | Modulus (GPa) | Poisson's ratio |
|-----------|---------------|-----------------|
| Magnitude | 58.71         | 0.315           |
| Std error | 4.75          | 0.08            |

F test = 111.4

Goodness of fit = 0.970

Correlation coefficient = 0.985

Standard deviation of difference is 53 on 7 degrees of freedom

The rejection limits were -1.79<L<1.79

The critical value of the F-RATIO (at 5%) was :4.74

The maximum allowable strain difference is :94.8

No Discards from Test HI 1  $\,$ 

The bidata worksheet will be updated showing your selection.

| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13    | 14    | 15    |
|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| A0   | A90  | A45  | B45  | B135 | B90  | C0   | C90  | C45  | D135 | E90  | F90  | Therm | Press | Time  |
| (µV) | (Ohms | (MPa) | (hrs) |
| 230  | 934  | 345  | 664  | 551  | 992  | 315  | 1560 | 848  | 1814 | 2091 | 1940 |       | 0     |       |
| 284  | 766  | 286  | 596  | 484  | 784  | 366  | 1331 | 757  | 1715 | 1842 | 1753 |       | 5     |       |
| 338  | 581  | 219  | 523  | 413  | 572  | 414  | 1108 | 667  | 1655 | 1616 | 1567 |       | 10    |       |
| 395  | 384  | 149  | 447  | 341  | 344  | 466  | 865  | 569  | 1589 | 1370 | 1373 |       | 15    |       |
| 236  | 956  | 352  | 673  | 561  | 1010 | 314  | 1572 | 857  | 1795 | 2087 | 1950 |       | 0     |       |

# $\int_{-x}^{x} Calculate Stress$

This button allows you to calculate Principal stresses, stress components and standard errors. *Note* the Modulus and Poisson's ratio of the rock must be first calculated or entered manually in the info worksheet column 2, in rows 37 and 38 respectively.

## Conventions used

Preset values for Alpha and Beta angles for the strain gauges are used.

Orientation of The B90 gauge must be known relative to the borehole

Bearing = Clockwise from NORTH Positive

Dip= Dip from Horizontal Positive Down

Right handed co-ordinate system

Positive stresses are compressive

+ve strains imply an expansion of the pilothole.

Select the overcore sheet; click the row you wish to calculate the stresses from or multi select gauges you wish to include. Click  $\int_{x}^{x}$ 

| X    | <b>9</b>  | • (°' - 🤮 | 🕯 🖓 I 🕇     | Ŧ      |                          | Str      | ess 2019 | sample.h | io - Mic | rosoft Exc | cel  |      |          | -        | - 🗆      | 2   | ×    |
|------|-----------|-----------|-------------|--------|--------------------------|----------|----------|----------|----------|------------|------|------|----------|----------|----------|-----|------|
| Fi   | le        | Stress    | Home        | Insert | Page                     | Layout   | Formu    | ulas [   | Data     | Review     | View | Deve | loper A  | Add-Ins  | ⊘ 🕜 ⊑    | - 6 | 53   |
|      | R52       | C14       | - (         | 0      | <i>f</i> <sub>x</sub> 58 | 3        |          |          |          |            |      |      |          |          |          |     | ~    |
|      | 1         | 2         | 3           | 4      | 5                        | 6        | 7        | 8        | 9        | 10         | 11   | 12   | 13       | 14       | 15       | 16  | E    |
| 2    | (µV)      | (μV)      | (µV)        | (µV)   | (µV)                     | (µV)     | (µV)     | (µV)     | (µV)     | (µV)       | (µV) | (µV) | (°C / Ω) | (cm)     | (hrs)    |     | (n   |
| 7    | -943      | 345       | 395         | 651    | -192                     | 1403     | -90      | 2038     | 36       | -1246      | 635  | -12  | 30.00    | 0        | 12:06:00 |     |      |
| 11   | -943      | 345       | 395         | 651    | -192                     | 1403     | -90      | 2038     | 36       | -1246      | 635  | -12  | 30.00    |          | 12:08:00 |     |      |
| 12   | -942      | 345       | 395         | 651    | -192                     | 1403     | -90      | 2036     | 36       | -1246      | 635  | -12  | 30.00    | 5        | 12:08:30 |     |      |
| 16   | -936      | 347       | 396         | 655    | -191                     | 1407     | -86      | 2039     | 40       | -1242      | 638  | -6   | 29.96    | 10       | 12:10:30 |     |      |
| 19   | -936      | 346       | 398         | 656    | -190                     | 1410     | -84      | 2041     | 41       | -1241      | 638  | -5   | 29.96    | 15       | 12:12:00 |     |      |
| 23   | -954      | 348       | 401         | 657    | -187                     | 1406     | -82      | 2037     | 39       | -1237      | 643  | 0    | 29.95    | 20       | 12:14:00 |     |      |
| 26   | -898      | 342       | 377         | 667    | -210                     | 1362     | -57      | 2021     | 52       | -1229      | 615  | -23  | 29.95    | 25       | 12:15:30 |     |      |
| 30   | -337      | 242       | 800         | 638    | 277                      | 1114     | 357      | 1917     | 275      | -1106      | 372  | -60  | 29.95    | 30       | 12:17:30 |     |      |
| 33   | -608      | 1063      | 1461        | 1005   | 1547                     | 3355     | 201      | 2853     | 713      | -1400      | 2042 | 479  | 29.94    | 35       | 12:19:00 |     |      |
| 37   | -512      | 850       | 1367        | 1065   | 1656                     | 3512     | 314      | 2770     | 788      | -1309      | 2335 | 142  | 29.94    | 40       | 12:21:00 |     |      |
| 41   | -517      | 847       | 1366        | 1057   | 1635                     | 3481     | 314      | 2751     | 772      | -1329      | 2330 | 147  | 29.90    | 45       | 12:23:00 |     |      |
| 45   | -519      | 839       | 1362        | 1046   | 1620                     | 3468     | 313      | 2744     | 768      | -1331      | 2328 | 143  | 30.28    | 50       | 12:25:00 |     |      |
| 48   | -520      | 836       | 1361        | 1041   | 1610                     | 3460     | 313      | 2740     | 769      | -1333      | 2328 | 144  | 30.55    | 55       | 12:26:30 |     |      |
| 52   | -521      | 836       | 1359        | 1035   | 1601                     | 3454     | 314      | 2740     | 769      | -1333      | 2332 | 147  | 30.78    | 58       | 12:28:30 |     |      |
| 53   | -520      | 834       | 1359        | 1035   | 1597                     | 3453     | 312      | 2740     | 767      | -1332      | 2334 | 146  | 30.82    |          | 12:29:00 |     | -    |
| 14 4 | ▶ ₩       | ocdata    | bidata      | info   | /plt / s                 | stress 🦯 | rock /   | rawdata  | / 🔁 /    | <b>↓</b>   |      |      |          | -        |          | -   |      |
| Lice | nsed to I | MMS Expi  | res in 86 l | Days   |                          |          |          |          |          |            |      |      | 100%     | $\Theta$ | -0       | -0  | Ð "; |

After you click  $\int_{-x}^{x}$  the ocdata worksheet will be updated showing your selection

| <b>X</b>   | <b>,</b> 19 | · (21 - 9 | 🖹 🖓   <del>-</del> |        |         | Str      | ess 2019 : | sample.h | io - Mic     | rosoft Exc | el:     |       |          | -        | - 🗆      |     | ×     |
|------------|-------------|-----------|--------------------|--------|---------|----------|------------|----------|--------------|------------|---------|-------|----------|----------|----------|-----|-------|
| Fil        | e           | Stress    | Home               | Insert | Pag     | e Layout | Formu      | ulas     | Data         | Review     | View    | Devel | oper A   | Add-Ins  | v 🕜 a    | - 6 | 53    |
|            | R52         | C14       | (                  |        | $f_x$ 5 | 8        |            |          |              |            |         |       |          |          |          |     | *     |
|            | 1           | 2         | 3                  | 4      | 5       | 6        | 7          | 8        | 9            | 10         | 11      | 12    | 13       | 14       | 15       | 16  | E     |
| 37         | -512        | 850       | 1367               | 1065   | 1656    | 3512     | 314        | 2770     | 788          | -1309      | 2335    | 142   | 29.94    | 40       | 12:21:00 |     |       |
| 41         | -517        | 847       | 1366               | 1057   | 1635    | 3481     | 314        | 2751     | 772          | -1329      | 2330    | 147   | 29.90    | 45       | 12:23:00 |     |       |
| 45         | -519        | 839       | 1362               | 1046   | 1620    | 3468     | 313        | 2744     | 768          | -1331      | 2328    | 143   | 30.28    | 50       | 12:25:00 |     |       |
| 48         | -520        | 836       | 1361               | 1041   | 1610    | 3460     | 313        | 2740     | 769          | -1333      | 2328    | 144   | 30.55    | 55       | 12:26:30 |     |       |
| 52         | -521        | 836       | 1359               | 1035   | 1601    | 3454     | 314        | 2740     | 769          | -1333      | 2332    | 147   | 30.78    | 58       | 12:28:30 |     |       |
| 53         | -520        | 834       | 1359               | 1035   | 1597    | 3453     | 312        | 2740     | 767          | -1332      | 2334    | 146   | 30.82    |          | 12:29:00 |     |       |
| гл<br>14 4 | ► FI        | ocdata    | bidata             | info ( | plt /   | stress / | rock /     | rawdata  | <b>د ، ر</b> | <br>       | <u></u> | 140   | 20.05    |          | 40.00.00 | •   |       |
| Licer      | nsed to I   | MMS Expi  | res in 86 D        | )ays   |         |          |            |          |              |            |         |       | <u> </u> | $\Theta$ |          | - ( | Ð .,; |

## Stress worksheet

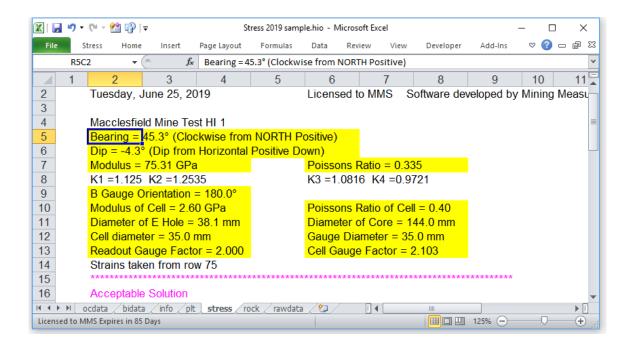
The output of the stress calculations is placed in this worksheet.

|          | リ・ピ・ 🔮 🖓                | <b>-</b>               |             |             | Stress 20   | )19 sample    | .hio - N  | licrosoft E | Excel |       |         |         |       | -        | _         |      | >     |
|----------|-------------------------|------------------------|-------------|-------------|-------------|---------------|-----------|-------------|-------|-------|---------|---------|-------|----------|-----------|------|-------|
| File     | Stress Hom              | e Inse                 | rt Pa       | ge Layout   | For         | mulas         | Data      | Review      | ,     | View  | De      | veloper | Add-  | Ins      | $\otimes$ | ? -  | ē     |
|          | R2C38 -                 | (=                     | $f_{x}$     |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
| 1        | 2 3                     | 4                      | 5           | 6           | 7           | 8             | 9         | 10          | 11    |       | 12      | 13      | 14    | 1        | 5         | 16   |       |
|          | Macclesfield Mine Te    | st HI 1                |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Bearing = 45.3° (Cloc   | kwise from             | NORTH F     | ositive)    |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Dip = -4.3° (Dip from   | Horizontal P           | ositive Do  | own)        |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Modulus = 75.31 GPa     | 1                      |             | Poissons    | Ratio = 0.3 | 335           |           |             |       |       |         |         |       |          |           |      |       |
|          | K1 =1.125 K2 =1.25      |                        |             | K3 =1.081   | 6 K4 =0.9   | 9721          |           |             |       |       |         |         |       |          |           |      |       |
|          | B Gauge Orientation     |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
| -        | Modulus of Cell = 2.6   |                        |             | Poissons    |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Diameter of E Hole =    |                        |             | Diameter of |             |               |           |             |       |       |         |         |       |          |           |      |       |
| :        | Cell diameter = 35.0 r  |                        |             | Gauge Dia   |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Readout Gauge Fact      |                        |             | Cell Gauge  | e Factor =  | 2.103         |           |             |       |       |         |         |       |          |           |      |       |
| -        | Strains taken from ro   |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
| -        |                         |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
| -        | Acceptable Solution     |                        | FERENCE     | TABLE       |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | RUN 1                   | STRAIN DIF             |             |             | Commute     | Difference    |           |             |       |       |         |         |       |          |           |      |       |
|          |                         | Alpha E<br>Macclesfiel | Beta        | measured    | Compute     | d Difference  | 9         |             |       |       |         |         |       |          |           |      |       |
|          | 1                       | 323.0                  | a mine<br>0 | 400         | 380         | 20            |           |             |       |       |         |         |       |          |           |      |       |
|          | 2                       | 300.0                  | 90          | 400         | 468         |               |           |             |       |       |         |         |       |          |           |      |       |
|          | 2                       | 300.0                  | 45          | 922         | 916         |               |           |             |       |       |         |         |       |          |           |      |       |
| -        | 4                       | 163.5                  | 45          | 353         | 375         | -             |           |             |       |       |         |         |       |          |           |      |       |
|          | 5                       | 163.5                  | 135         | 1672        | 1705        |               |           |             |       |       |         |         |       |          |           |      |       |
| 1        | 6                       | 180.0                  | 90          | 1936        | 1923        |               |           |             |       |       |         |         |       |          |           |      |       |
|          | 7                       | 83.0                   | 0           | 384         | 380         |               |           |             |       |       |         |         |       |          |           |      |       |
|          | . 8                     | 60.0                   | 90          | 676         | 722         | -             |           |             |       |       |         |         |       |          |           |      |       |
|          | 9                       | 60.0                   | 45          | 701         | 692         |               |           |             |       |       |         |         |       |          |           |      |       |
|          | 10                      | 300.0                  | 135         | -76         | -69         | -             |           |             |       |       |         |         |       |          |           |      |       |
| )        | 11                      | 210.0                  | 90          | 1637        | 1608        | -             |           |             |       |       |         |         |       |          |           |      |       |
|          | 12                      | 90.0                   | 90          | 174         | 152         |               |           |             |       |       |         |         |       |          |           |      |       |
| 2        |                         |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Principal Stresses      |                        |             |             |             |               |           |             |       | Prin  | cipal S | tresses |       |          |           |      |       |
|          |                         | Magnitude              | e (MPa)     | Dip         | (°)         | Bear          | ing (°)   |             |       |       |         |         | Magni | tude (P  | SI)       | 0    | ) (°) |
|          | Major                   | 74.                    | 4           | o           | 5           |               | 71        |             |       | Majo  | or      |         |       | 0787     | 1         |      | 05    |
|          | Intermediate            | 43.                    | 2           | 2           | 3           | 1             | 78        |             |       | Inter | rmedia  | te      | 6     | 5270     |           |      | 23    |
|          | Minor                   | 26.                    | 0           | 6           | 6           | 0             | 13        |             |       | Mino  | or      |         | 3     | 3773     |           |      | 66    |
| <b>;</b> |                         |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
| )        |                         |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Stress                  |                        | Stresses    |             |             | r Stresses    |           |             |       | Stre  |         |         |       | nal Stre |           |      |       |
|          | Components              | N-S                    | E-W         | Vert        | NS-EW       | EW-Vert       |           | ;           |       |       | ponen   | ts      | N-S   | E-       |           | Vert | N     |
|          | Magnitude               | 40.63                  | 73.93       | 29.04       | -0.94       | -4.41         | -6.10     |             |       |       | nitude  |         | 5893  | 107      | _         | 4212 |       |
| i        | Std Error               | 1.11                   | 0.97        | 0.57        | 0.72        | 0.43          | 0.56      |             |       | Std   | Error   |         | 161   | 14       | 41        | 83   |       |
|          |                         |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | F test = 781.3          |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | Goodness of fit = 0.9   |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
| · _      | Correlation coefficier  |                        |             |             |             |               |           |             |       |       |         |         |       |          |           |      |       |
| 1        | Standard deviation o    |                        |             | 6 degrees   | of freedo   | n             |           |             |       |       |         |         |       |          |           |      |       |
| )        | The rejection limits w  |                        |             |             | _           |               |           |             |       |       |         |         |       |          |           |      |       |
| )        | The critical value of t |                        |             |             | The calc    | ulated F rati | o at 5% v | vas: 781.3  | 34    |       |         |         |       |          |           |      |       |
| _        | The maximum allowa      |                        | tterence    | s :54.0     |             |               |           |             |       |       |         |         |       |          |           |      |       |
|          | No Discards from Te     |                        |             |             |             |               | 1.4       |             | _     |       |         |         |       |          |           |      |       |
| -        |                         |                        |             | _           |             | course a bo   | / 🐑 /     | 1           | 4     |       |         |         |       |          |           |      | - F   |
| 4 F      | 🕨 ocdata 🦯 bida         | ta <u>/</u> info       | <u> </u>    | stress /    | TOCK /      | rawdata _     |           |             | •     |       |         |         |       |          |           |      | - P   |

| 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13     | 14   | 15    |
|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|-------|
| A0   | A90  | A45  | B45  | B135 | B90  | C0   | C90  | C45  | D135 | E90  | F90  | Therm  | Dist | Time  |
| (µV) | (Ohms) | (cm) | (hrs) |
| 12   | 26   | 1    | 12   | 11   | 18   | 8    | 512  | -19  | 1016 | 1012 | 1019 | 2110   | 0    | 09:00 |
| 14   | 29   | 6    | 18   | 18   | 24   | 10   | 518  | -14  | 1019 | 1012 | 1028 | 2110   | 0    | 09:10 |
| 16   | 28   | 2    | 18   | 17   | 21   | 14   | 516  | -14  | 1016 | 1012 | 1018 | 2110   | 6    | 09:12 |
| 30   | -26  | 4    | 26   | 21   | -24  | 66   | 466  | 6    | 1024 | 974  | 961  | 2110   | 12   | 09:14 |
| 254  | -104 | 41   | 101  | 105  | -52  | 333  | 420  | 168  | 1136 | 947  | 938  | 2110   | 18   | 09:16 |
| 248  | 353  | 144  | 411  | 288  | 591  | 176  | 1097 | 565  | 1534 | 1644 | 1639 | 2120   | 25   | 09:18 |

| 214 | 691 | 222 | 554 | 428 | 756 | 296 | 1348 | 736 | 1651 | 1881 | 1727 | 2145 | 35 | 09:20 |
|-----|-----|-----|-----|-----|-----|-----|------|-----|------|------|------|------|----|-------|
| 221 | 686 | 218 | 560 | 430 | 762 | 297 | 1351 | 740 | 1653 | 1887 | 1732 | 2798 | 45 | 09:22 |
| 222 | 684 | 221 | 564 | 436 | 771 | 298 | 1361 | 741 | 1656 | 1891 | 1741 | 2120 | 55 | 09:24 |

...or multi selection – for selected gauges


You may be prompted to accept or reject a certain Run if gauges are not statistically acceptable. Select Yes or No.  $\Gamma^{x}$ 

Click  $\int_{-x}^{x}$  to get the following report:

Friday, 24 June 2011 Licensed to X Software developed by MMS Macclesfield Mine Test HI 1 Bearing = 45.3° (Clockwise from NORTH Positive) Dip = -4.3° (Dip from Horizontal Positive Down) Modulus = 60.34 GPa Poissons Ratio = 0.297 K1 =1.126 K2 =1.2503 K3 =1.0810 K4 =0.9505 B Gauge Orientation = 180.0° Poissons Ratio of Cell = 0.40Modulus of Cell = 2.60 GPa Diameter of E Hole = 38.1 mm Diameter of Core = 144.5 mm Cell diameter = 35.0 mm Gauge Diameter = 35.0 mm Readout Gauge Factor = 2.000 Cell Gauge Factor = 2.103 Strains taken from row 11

# Checks

After calculating Stresses the values at the beginning of the *stress* worksheet should be checked to make sure they have been entered correctly. These values are taken from the info worksheet.



## Warnings and errors

The user will be advised when the program detects problems (not all problems) with the data. Some are critical warnings eg. "Invalid cell diameter" and the program will terminate and others are just warnings

Not all errors are trapped by the program; however, Excel will terminate the program and display an error message if it encounters a un trapped error.

## Trouble shooting

If you would like to send us a copy of your first workbook you have made. We will check that the correct variables have been used and there are no errors in the spreadsheets. This program has been trialled in the English version for over 10 years with satisfactory results.

If there is a problem or unexpected/suspect results occur when the program is run please send the following information:

- Description of the problem
- Workbook
- Any error numbers
- Regional, Date/Time and locale number settings
- Microsoft Office Version number

# **TROUBLE SHOOTING**

This programme has been trialled in the English version for over 20 years with satisfactory results.

If there is a problem with the programme, send the workbook, together with a description of the problem and/or the error number and also the Regional, Date/Time and locale number settings to <u>sales@geosystems.com.au</u>

We welcome any suggestions that you may have to improve the programme.

# **COPYRIGHT & SUBSCRIPTION**

This programme is supplied subject to the following terms and conditions:

- Each copy can only be installed on a maximum of 3 machines at the one time.
- No reverse engineering is allowed.
- The copy is licensed ONLY to the original purchaser for a period of one year from the purchase date
- The program will prompt the user in advance to renew their subscription. A reminder message will be displayed alerting the user of the approaching expiry date.
- Updates will be issued where necessary.

# ACKNOWLEDGMENTS

The user understands and acknowledges that the current development of the program is as outlined by the following general disclaimers.

The outcome and tasks provided by this program depend on the quality of output data collected. The CSIRO HI Cell input data is dependent on the quality, ability and experience of installation by the user.

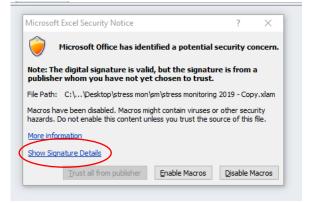
The program provides statistical information of rock stresses with specified standard errors. Accuracy is dependent on the sensors gauges. Any individual gauge may fail for any of a multitude of reasons. Damage or poor contact to pilot wall will produce dubious results. Strain gauge data behaving in a non linear or anisotropic fashion must be disregarded.

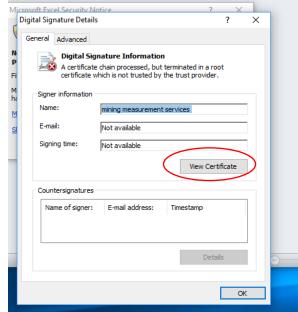
ESS Earth Sciences in no way accept responsibility for any misuse of software or misinterpretation of results.

It is assumed that the user is familiar with the Field Manual for the use of HI Cells which are available from ESS Earth Sciences. It is assumed that the user is familiar with the Stress 91 which is also available from ESS Earth Sciences.

The rock stresses are computed using the method proposed by Panek, L.A (1966). The program calculates the best statistical estimate of the stress components in a desired coordinate system, their standard errors and the principal stresses and directions. The program makes use of factors (K-Factors; Worotnicki and Walton, 1976) to correct for the effect of the strain gauges of a HI Cell being located approximately 1.5-2.0mm away from pilot hole wall.

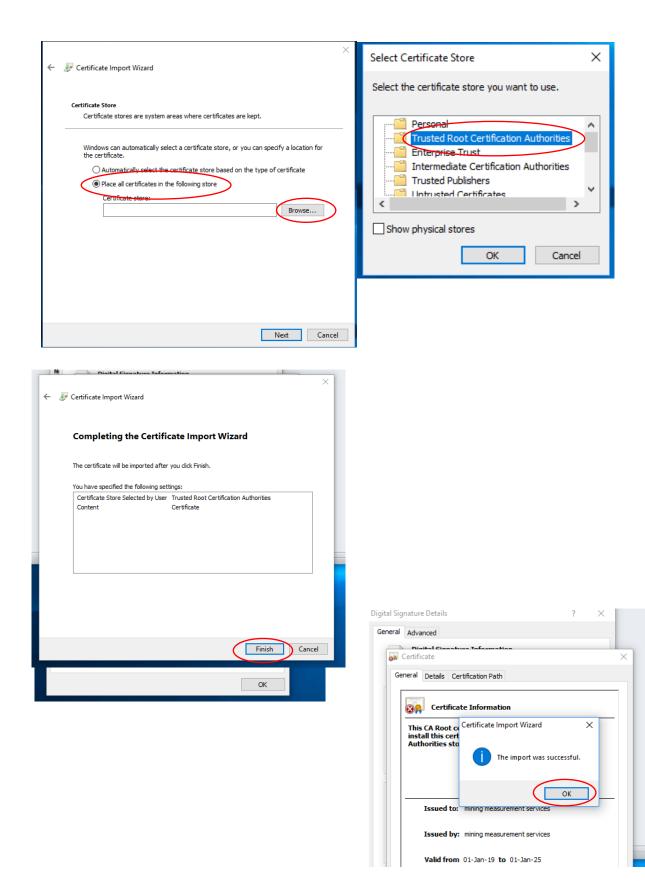
# REFERENCES


PANEK, L.A. (1966). Calculation of the Average Ground Stress Components from Measurements of Diametrical Deformation of a Drill Hole. Testing Techniques for Rock Mechanics, A.S.T.M. STP No.402, pp 106-132.


DUNCAN FAMA, M.E. & PENDER, MJ (1980) Analysis of the Hollow Inclusion Technique for measuring in insitu rock stress. Int.J. Rock Mech. Min. Sci V.17, No.3 pp.137-146.

WOROTNICKI, G & WALTON, RJ (1976) Triaxial 'hollow inclusion' gauges fro determination of rock stresses in situ. CSIRO Aust. Division Applied Geomechanics Research Paper 275, reprinted from Proc. ISRM Symp. On investigations of stress in rock – Advances in Stress Measurement, Sydney, Aug., Supplement pp. 1-8

LITTERBACH, Nick (1991) Programming to Determine Insitu Stress, Mining Measurement Services Report.


# **Installing The Digital Signature**





| <br>Advanced                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| <br>Certificate                                                                                                                               |
| eneral Details Certification Path                                                                                                             |
| Certificate Information                                                                                                                       |
| This CA Root certificate is not trusted. To enable trust,<br>install this certificate in the Trusted Root Certification<br>Authorities store. |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| Issued to: mining measurement services                                                                                                        |
| Issued to: mining measurement services Issued by: mining measurement services                                                                 |
| _                                                                                                                                             |
| Issued by: mining measurement services                                                                                                        |

| Microsoft Excel Security Notice ? X<br>Digital Signature Details ? X                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Advanced                                                                                                                                                                |
| N Disital Constitue Toformation                                                                                                                                                 |
| K Sertificate Import Wizard                                                                                                                                                     |
| Certificate import wizard                                                                                                                                                       |
|                                                                                                                                                                                 |
| Welcome to the Certificate Import Wizard                                                                                                                                        |
| This wizard helps you copy certificates, certificate trust lists, and certificate revocation                                                                                    |
| lists from your disk to a certificate store.                                                                                                                                    |
| A certificate, which is issued by a certification authority, is a confirmation of your identity<br>and contains information used to protect data or to establish secure network |
| connections. A certificate store is the system area where certificates are kept.                                                                                                |
| Store Location     Ourrent User                                                                                                                                                 |
|                                                                                                                                                                                 |
| To continue, dick Next.                                                                                                                                                         |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
|                                                                                                                                                                                 |
| Next Cancel                                                                                                                                                                     |
|                                                                                                                                                                                 |



| Microsoft Excel Security Notice                                                                                         | ?          | $\times$ |
|-------------------------------------------------------------------------------------------------------------------------|------------|----------|
| Microsoft Office has identified a potential s                                                                           | ecurity co | oncern.  |
| Note: The digital signature is valid, but the signature publisher whom you have not yet chosen to trust.                | e is from  | a        |
| File Path: C:\\Desktop\stress mon\sm\stress monitoring                                                                  | 2019 - Cop | y.xlam   |
| Macros have been disabled. Macros might contain viruses or hazards. Do not enable this content unless you trust the sou |            |          |
| More information                                                                                                        |            |          |
| Show Signature Details                                                                                                  |            |          |
| <u>I</u> rust all from publisher <u>E</u> nable Macros                                                                  | Disable N  | 1acros   |